
Beginner's Python
Cheat Sheet - Git

Version Control
Version control software allows you to take snapshots
of a project whenever it’s in a working state. If your
project stops working, you can roll back to the most
recent working version of the project.
 Version control is important because it frees you
to try new ideas with your code, without worrying that
you’ll break your overall project. A distributed version
control system like Git is also really useful in working
collaboratively with other developers.

Installing Git
You can find an installer for your system at git-scm.com/.
Before doing that, check if Git is already on your system:

$ git --version
git version 2.30.1 (Apple Git-130)

Configuring Git
You can configure Git so some of its features are easier to
use. The editor setting controls which editor Git will open
when it needs you to enter text.

See all global settings
$ git config --list

Set username
$ git config --global user.name "eric"

Set email
$ git config --global user.email
 "eric@example.com"

Set editor
$ git config --global core.editor "nano"

Ignoring files
To ignore files make a file called ".gitignore", with a leading
dot and no extension. Then list the directories and files you
want to ignore.

Ignore directories
__pycache__/
my_venv/

Ignoring files (cont.)
Ignore specific files
.DS_Store
secret_key.txt

Ignore files with specific extensions
*.pyc

Initializing a repository
All the files Git uses to manage the repository are located in
the hidden directory .git. Don't delete that directory, or you'll
lose your project's history.

Initialize a repository
$ git init
Initialized empty Git repository in
 my_project/.git/

Checking the status
It's important to check the status of your project often, even
before the first commit. This will tell you which files Git is
planning to track.

Check status
$ git status
On branch main
No commits yet
Untracked files:
 .gitignore
 hello.py
 ...

Adding files
You'll need to add the files you want Git to keep track of.

Add all files not in .gitignore
$ git add .

Add a single file
$ git add hello.py

Making a commit
When making a commit, the -am flag commits all files that
have been added, and records a commit message. (It's a
good idea to check the status before making each commit.)

Make a commit with a message
$ git commit -am "Started project, everything
 works."
2 files changed, 7 insertions(+)
create mode 100644 .gitignore
create mode 100644 hello.py

Checking the log
Git logs all the commits you've made. Checking the log is
helpful for understanding the history of your project.

Check log in default format
$ git log
commit dc2ebd6... (HEAD -> main)
Author: Eric Matthes <eric@example.com>
Date: Feb 27 11:27:07 2023 -0900
 Greets user.
commit bf55851...
...

Check log in simpler format
$ git log --oneline
dc2ebd6 (HEAD -> main) Greets uer.
bf55851 Started project, everything works.

Exploring history
You can explore a project's history by visiting specific
commit hashes, or by referencing the project's HEAD. HEAD
refers to the most recent commit of the current branch.

Visit a specific commit
$ git checkout b9aedbb

Return to most recent commit of main branch
$ git checkout main

Visit the previous commit
$ git checkout HEAD^

Visit an earlier commit
$ git checkout HEAD^^^

Visit the previous commit
$ git checkout HEAD~1

Vist an earlier commit
$ git checkout HEAD~3

Learning more
You can learn more about using Git with the command git
help. You can also go to Stack Overflow and search for git,
and then sort the questions by number of votes.

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

https://git-scm.com

Branching
When the work you're about to do will involve multiple
commits, you can create a branch where you'll do this work.
The changes you make will be kept away from your main
branch until you choose to merge them. It's common to
delete a branch after merging back to the main branch.
 Branches can also be used to maintain independent
releases of a project.

Make a new branch and switch to it
$ git checkout -b new_branch_name
Switched to a new branch 'new_branch_name'

See all branches
$ git branch
main
* new_branch_name

Switch to a different branch
$ git checkout main
Switched to branch 'main'

Merge changes
$ git merge new_branch_name
Updating b9aedbb..5e5130a
Fast-forward
 hello.py | 5 +++++
 1 file changed, 5 insertions(+)

Delete a branch
$ git branch -D new_branch_name
Deleted branch new_branch_name
 (was 5e5130a).

Move last commit to new branch
$ git branch new_branch_name
$ git reset --hard HEAD~1
$ git checkout new_branch_name

Undoing recent changes
One of the main points of version control is to allow you to
go back to any working state of your project and start over
from there.

Get rid of all uncommited changes
$ git checkout .

Get rid of all changes since a specific commit
$ git reset --hard b9aedbb

Create new branch starting at a previous commit
$ git checkout -b branch_name b9aedbb

Stashing changes
If you want to save some changes without making a commit,
you can stash your changes. This is useful when you want to
revisit the most recent commit without making a new commit.
You can stash as many sets of changes as you need.

Stash changes since last commit
$ git stash
Saved working directory and index state
 WIP on main: f6f39a6...

See stashed changes
$ git stash list
stash@{0}: WIP on main: f6f39a6...
stash@{1}: WIP on main: f6f39a6...
...

Reapply changes from most recent stash
$ git stash pop

Reapply changes from a specific stash
$ git stash pop --index 1

Clear all stashed changes
$ git stash clear

Comparing commits
It's often helpful to compare changes across different states
of a project.

See all changes since last commit
$ git diff

See changes in one file since last commit
$ git diff hello.py

See changes since a specific commit
$ git diff HEAD~2
$ git diff HEAD^^
$ git diff fab2cdd

See changes between two commits
$ git diff fab2cdd 7c0a5d8

See changes in one file between two commits
$ git diff fab2cdd 7c0a5d8 hello.py

Good commit habits
Try to make a commit whenever your project is in a new
working state. Make sure you're writing concise commit
messages that focus on what changes have been
implemented. If you're starting work on a new feature or
bugfix, consider making a new branch.

Git & GitHub
GitHub is a platform for sharing code, and working
collaboratively on code. You can clone any public project on
GitHub. When you have an account, you can upload your
own projects, and make them public or private.

Clone an existing repository to your local system
$ git clone
 https://github.com/ehmatthes/pcc_3e.git/
Cloning into 'pcc_3e'...
...
Resolving deltas: 100% (1503/1503), done.

Push a local project to a GitHub repository
You'll need to make an empty repository on GitHub first.

$ git remote add origin
 https://github.com/username/hello_repo.git
$ git push -u origin main
Enumerating objects: 10, done.
...
To https://github.com/username/hello_repo.git
 * [new branch] main -> main
Branch 'main' set up to track remote branch
 'main' from 'origin'.

Push recent changes to your GitHub repository
$ git push origin branch_name

Using pull requests
When you want to pull a set of changes from one branch
into the main branch of a project on GitHub, you can make
a pull request. To practice making pull requests on your own
repositories, make a new branch for your work. When you're
finished the work, push the branch to your repository. Then
go to the "Pull requests" tab on GitHub, and click "Compare
& pull request" on the branch you wish to merge. When
you're ready, click "Merge pull request".
 You can then pull these changes back into your local main
branch with git pull origin main. This is an alternative
to merging changes to your main branch locally, and then
pushing the main branch to GitHub.

Practicing with Git
Git can be used in simple ways as a solo developer, and
complex ways as part of a large collaborative team. You can
gain valuable experience by making a simple throwaway
project and trying all of these steps with that project. Make
sure your project has multiple files and nested folders to get
a clear sense of how Git works.

Weekly posts about all things Python
mostlypython.substack.com

